skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roeder, Kathryn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Summary CRISPR genome engineering and single-cell RNA sequencing have accelerated biological discovery. Single-cell CRISPR screens unite these two technologies, linking genetic perturbations in individual cells to changes in gene expression and illuminating regulatory networks underlying diseases. Despite their promise, single-cell CRISPR screens present considerable statistical challenges. We demonstrate through theoretical and real data analyses that a standard method for estimation and inference in single-cell CRISPR screens—“thresholded regression”—exhibits attenuation bias and a bias-variance tradeoff as a function of an intrinsic, challenging-to-select tuning parameter. To overcome these difficulties, we introduce GLM-EIV (“GLM-based errors-in-variables”), a new method for single-cell CRISPR screen analysis. GLM-EIV extends the classical errors-in-variables model to responses and noisy predictors that are exponential family-distributed and potentially impacted by the same set of confounding variables. We develop a computational infrastructure to deploy GLM-EIV across hundreds of processors on clouds (e.g. Microsoft Azure) and high-performance clusters. Leveraging this infrastructure, we apply GLM-EIV to analyze two recent, large-scale, single-cell CRISPR screen datasets, yielding several new insights. 
    more » « less
  3. Abstract Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method — SCEPTRE low-MOI — that resolves these analysis challenges and demonstrates improved calibration and power. 
    more » « less
  4. ABSTRACT In genomics studies, the investigation of gene relationships often brings important biological insights. Currently, the large heterogeneous datasets impose new challenges for statisticians because gene relationships are often local. They change from one sample point to another, may only exist in a subset of the sample, and can be nonlinear or even nonmonotone. Most previous dependence measures do not specifically target local dependence relationships, and the ones that do are computationally costly. In this paper, we explore a state-of-the-art network estimation technique that characterizes gene relationships at the single cell level, under the name of cell-specific gene networks. We first show that averaging the cell-specific gene relationship over a population gives a novel univariate dependence measure, the averaged Local Density Gap (aLDG), that accumulates local dependence and can detect any nonlinear, nonmonotone relationship. Together with a consistent nonparametric estimator, we establish its robustness on both the population and empirical levels. Then, we show that averaging the cell-specific gene relationship over mini-batches determined by some external structure information (eg, spatial or temporal factor) better highlights meaningful local structure change points. We explore the application of aLDG and its minibatch variant in many scenarios, including pairwise gene relationship estimation, bifurcating point detection in cell trajectory, and spatial transcriptomics structure visualization. Both simulations and real data analysis show that aLDG outperforms existing ones. 
    more » « less
  5. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less
  6. Mathelier, Anthony (Ed.)
    Abstract Motivation Marker genes, defined as genes that are expressed primarily in a single-cell type, can be identified from the single-cell transcriptome; however, such data are not always available for the many uses of marker genes, such as deconvolution of bulk tissue. Marker genes for a cell type, however, are highly correlated in bulk data, because their expression levels depend primarily on the proportion of that cell type in the samples. Therefore, when many tissue samples are analyzed, it is possible to identify these marker genes from the correlation pattern. Results To capitalize on this pattern, we develop a new algorithm to detect marker genes by combining published information about likely marker genes with bulk transcriptome data in the form of a semi-supervised algorithm. The algorithm then exploits the correlation structure of the bulk data to refine the published marker genes by adding or removing genes from the list. Availability and implementation We implement this method as an R package markerpen, hosted on CRAN (https://CRAN.R-project.org/package=markerpen). Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  7. null (Ed.)
    Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets or transfer knowledge from one to the other to better understand cellular identity and functions. Here, we present a simple yet surprisingly effective method named common factor integration and transfer learning (cFIT) for capturing various batch effects across experiments, technologies, subjects, and even species. The proposed method models the shared information between various datasets by a common factor space while allowing for unique distortions and shifts in genewise expression in each batch. The model parameters are learned under an iterative nonnegative matrix factorization (NMF) framework and then used for synchronized integration from across-domain assays. In addition, the model enables transferring via low-rank matrix from more informative data to allow for precise identification in data of lower quality. Compared with existing approaches, our method imposes weaker assumptions on the cell composition of each individual dataset; however, it is shown to be more reliable in preserving biological variations. We apply cFIT to multiple scRNA-seq datasets of developing brain from human and mouse, varying by technologies and developmental stages. The successful integration and transfer uncover the transcriptional resemblance across systems. The study helps establish a comprehensive landscape of brain cell-type diversity and provides insights into brain development. 
    more » « less
  8. Abstract The use of external controls in genome-wide association study (GWAS) can significantly increase the size and diversity of the control sample, enabling high-resolution ancestry matching and enhancing the power to detect association signals. However, the aggregation of controls from multiple sources is challenging due to batch effects, difficulty in identifying genotyping errors and the use of different genotyping platforms. These obstacles have impeded the use of external controls in GWAS and can lead to spurious results if not carefully addressed. We propose a unified data harmonization pipeline that includes an iterative approach to quality control and imputation, implemented before and after merging cohorts and arrays. We apply this harmonization pipeline to aggregate 27 517 European control samples from 16 collections within dbGaP. We leverage these harmonized controls to conduct a GWAS of Crohn’s disease. We demonstrate a boost in power over using the cohort samples alone, and that our procedure results in summary statistics free of any significant batch effects. This harmonization pipeline for aggregating genotype data from multiple sources can also serve other applications where individual level genotypes, rather than summary statistics, are required. 
    more » « less